How a Neurotransmitter May Be the Key in Controlling Alzheimer’s Toxicity​

Summary: Study reveals how somatostatin and copper affect amyloid beta in Alzheimer’s disease pathology.

Source: KAIST

With nearly 50 million dementia patients worldwide, and Alzheimers’s disease is the most common neurodegenerative disease. Its main symptom is the impairment of general cognitive abilities, including the ability to speak or to remember.

The importance of finding a cure is widely understood with increasingly aging population and the life expectancy being ever-extended. However, even the cause of the grim disease is yet to be given a clear definition.

A KAIST research team in the Department of Chemistry led by professor Mi Hee Lim took on a lead to discovered a new role for somatostatin, a protein-based neurotransmitter, in reducing the toxicity caused in the pathogenic mechanism taken towards development of Alzheimer’s disease.

The study was published in the July issue of Nature Chemistry under the title, “Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β”.

According to the amyloid hypothesis, the abnormal deposition of Aβ proteins causes death of neuronal cells. While Aβ agglomerations make up most of the aged plaques through fibrosis, and in recent studies, high concentrations of transitional metal were found in the plaques from Alzheimer’s patients.

This suggests a close interaction between metallic ions and Aβ, which accelerates the fibrosis of proteins. Copper in particular is a redox-activating transition metal that can produce large amounts of oxygen and cause serious oxidative stress on cell organelles.

Aβ proteins and transition metals can closely interact with neurotransmitters at synapses, but the direct effects of such abnormalities on the structure and function of neurotransmitters are yet to be understood.

In their research, Professor Lim’s team discovered that when somatostatin, the protein-based neurotransmitter, is met with copper, Aβ, and metal-Aβ complexes, self-aggregates and ceases to perform its innate function of transmitting neural signals, but begins to attenuate the toxicity and agglomeration of metal-Aβ complexes.

This research, by Dr. Jiyeon Han et al. from the KAIST Department of Chemistry, revealed the coordination structure between copper and somatostatin at a molecular level through which it suggested the agglomeration mechanism, and discovered the effects of somatostatin on Aβ agglomeration path depending on the presence or absence of metals.

This shows a diagram from the study
Functional shift of somatostatin (SST) by factors in the pathogenesis of Alzheimer’s disease. Credit: Center for MetalloNeuroProteinoChemistry

The team has further confirmed somatostatin’s receptor binding, interactions with cell membranes, and effects on cell toxicity for the first time to receive international attention.

Professor Mi Hee Lim said, “This research has great significance in having discovered a new role of neurotransmitters in the pathogenesis of Alzheimer’s disease.”

“We expect this research to contribute to defining the pathogenic network of neurodegenerative diseases caused by aging, and to the development of future biomarkers and medicine,” she added.

This research was conducted jointly by Professor Seung-Hee Lee’s team of KAIST Department of Biological Sciences, Professor Kiyoung Park’s Team of KAIST Department of Chemistry, and Professor Yulong Li’s team of Peking University.

Funding: The research was funded by Basic Science Research Program of the National Research Foundation of Korea and KAIST.

About this Alzheimer’s disease research news

Author: Yoonju Hong

Source: KAIST

Contact: Yoonju Hong – KAIST

Image: The image is credited to Center for MetalloNeuroProteinoChemistry

See also

This shows a spinal cord and a syringe

Original Research: Closed access.

Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β” by Mi Hee Lim et al. Nature Chemistry


Abstract

Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β

The progression of neurodegenerative disorders can lead to impaired neurotransmission; however, the role of pathogenic factors associated with these diseases and their impact on the structures and functions of neurotransmitters have not been clearly established.

Here we report the discovery that conformational and functional changes of a native neuropeptide, somatostatin (SST), occur in the presence of copper ions, metal-free amyloid-β (Aβ) and metal-bound Aβ (metal–Aβ) found as pathological factors in the brains of patients with Alzheimer’s disease.

These pathological elements induce the self-assembly of SST and, consequently, prevent it from binding to the receptor. In the reverse direction, SST notably modifies the aggregation profiles of Aβ species in the presence of metal ions, attenuating their cytotoxicity and interactions with cell membranes.

Our work demonstrates a loss of normal function of SST as a neurotransmitter and a gain of its modulative function against metal–Aβ under pathological conditions.

Read More

Affiliate disclosure: The links contained in this product review may result in a small commission if you opt to purchase the product recommended at no additional cost to you. This goes towards supporting our research and editorial team and please know we only recommend high quality products.

Disclaimer: Please understand that any advice or guidelines revealed here are not even remotely a substitute for sound medical advice from a licensed healthcare provider. Make sure to consult with a professional physician before making any purchasing decision if you use medications or have concerns following the review details shared above. Individual results may vary as the statements made regarding these products have not been evaluated by the Food and Drug Administration. The efficacy of these products has not been confirmed by FDA-approved research. These products are not intended to diagnose, treat, cure or prevent any disease.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.